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CALCULATION OF THE SLIP VELOCITY OF A RAREFIED GAS

ON A SOLID SPHERICAL SURFACE WITH ALLOWANCE

FOR ACCOMMODATION COEFFICIENTS

UNC 533.72A. V. Latyshev, V. N. Popov, and A. A. Yushkanov

The slip velocity of a rarefied gas with inhomogeneous temperature and mass velocity on a solid
spherical surface is calculated with the use of a two-moment boundary condition in the linear approx-
imation in terms of the Knudsen number. The dependence of the slip velocity on accommodation
coefficients of the two first moments of the distribution function is studied.
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Introduction. Determination of hydrodynamic boundary conditions on the surface of wetted bodies is
one of the most important problems in the kinetic theory of gases [1]. Despite the large number of papers in this
field, however, the problem remains open, in particular, for real surfaces. The Maxwell specular–diffuse boundary
condition [1] is often used as a microscopic boundary condition imposed on the distribution function on the surfaces
exposed to the gas action. All parameters of reflected molecules are determined by one quantity: diffusion coefficient.
A similar situation is obtained by using the Cercignani boundary condition [2], in which all parameters of reflected
molecules are determined by the accommodation coefficient of tangential momentum ατ .

The model of Cercignani and Lampis [3] is more comprehensive. In imposing the boundary conditions, this
model allows one to take into account not only the accommodation coefficient of tangential momentum ατ but
also the accommodation coefficient of the energy flux normal to the surface αn. The use of this model of boundary
conditions offers a more detailed description of the interaction processes at the gas–surface interface. A large number
of problems of rarefied gas dynamics have been solved by numerical methods with the use of the Cercignani–Lampis
model for boundary conditions (see, e.g., [4–6] and the bibliography therein). The use of this model of boundary
conditions (as well as the Maxwell specular–diffuse model) in constructing exact analytical solutions of boundary-
value problems of the kinetic theory of rarefied gases leads to insurmountable mathematical difficulties, since the
problem reduces to solving inhomogeneous nonlinear integral equations, and there are no mathematical tools for
constructing exact analytical solutions for these equations. At the same time, the use of the Cercignani boundary
condition yields results that contradict experimental data. In particular, with the use of this boundary condition,
the coefficient of thermal slipping is independent of the accommodation coefficient of tangential momentum.

The boundary condition proposed in [7] is a generalization of the Cercignani condition and allows one to
take into account not only the accommodation coefficient of the first moment of the distribution function q1, which
is the accommodation coefficient of tangential momentum, but also the accommodation coefficient of the second
moment of the distribution function q2, which can be treated as the accommodation coefficient of the tangential
momentum flux. With the use of the two-moment boundary conditions, the velocities of the thermal and isothermal
slipping of a rarefied gas on a solid flat surface were calculated in [7]. For q1 = q2 = ατ , the boundary condition
suggested in [7] approximates the Maxwell specular–diffuse boundary condition.

With the use of the two-moment boundary condition, the slip velocity of a rarefied gas with inhomogeneous
temperature and mass velocity on a solid spherical surface of radius R0 is calculated in the present work. In [8, 9], this
problem was solved for the case of an arbitrary solid smooth surface with fully diffuse reflection of gas molecules by
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the interface for Mach numbers M � 1 and, correspondingly, for limitingly low and finite Reynolds numbers Re. On
the basis of the results of [8], Sone and Aoki [10] calculated the drag force in an isothermal rarefied gas flow around
a sphere, the thermo- and electrophoretic forces acting on a spherical particle, and also the rate of thermophoresis
of a spherical aerosol particle. A detailed review of papers published in this field can be found in [11, 12].

The Bhatnagar–Gross–Krook (BGK) model of the Boltzmann kinetic equation was used as the basic equation
in the present work. The use of this model in the problem considered is caused by the fact that, having some
drawbacks [13] and being the simplest model of the Boltzmann kinetic equation from the mathematical viewpoint,
this model offers a correct description of the processes of slipping of a rarefied gas on a solid surface.

1. Formulation of the Problem. Derivation of the Basic Equations. We consider a rarefied gas
with inhomogeneous temperature and mass velocity, which flows around a spherical surface of radius R0 under
conditions M � 1 and Re � 1. We linearize the distribution function of the gas particles with respect to the
absolute Maxwellian:

f(r,C) = f0(r,C)[1 + Y (r,C)].

Here f0(r,C) = (β/π)3/2 exp (−C2) is the absolute Maxwellian, β = m/(2kBT ), C = β1/2v (v is the own velocity
of gas molecules, kB is the Boltzmann constant, and m is the mass of gas particles), r = r0(p/µg)β1/2, r0 is the
dimensional radius vector, µg is the dynamic viscosity of the gas, and p is the static pressure; the function Y (r,C)
satisfies the linearized Boltzmann kinetic equation with the collision operator in the form of the BGK model. In a
spherical coordinate system whose origin coincides with the particle center, this equation is written in the form
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K(C,C ′) = 1 + 2CC ′ + (2/3)(C2 − 3/2)(C ′2 − 3/2).

By virtue of axial symmetry of the problem, we have ∂Y/∂ϕ = 0. With allowance for the boundary conditions
[7], we obtain
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Far from the surface, f(r,C) transforms to the volume distribution function written in the Barnett approx-
imation.

We confine ourselves to low values of the Knudsen number Kn = l/R0 � 1 (l is the mean free path of gas
molecules, related to kinematic viscosity of the gas ν by the expression ν = l(2kBT/(πm))1/2). Following [8], we
seek the solution of (1.1) in the form of the expansion into a series with respect to the parameter k = 2Kn /

√
π:

Y (r,C) = kY1(r,C) + k2Y2(r,C) + . . . . (1.3)

We substitute (1.3) into (1.1) and (1.2), taking into account that the following relations are valid in problems
of gas slipping on the spherical surface (µ = Cr):

Y1(r,C) = Cθ(C2
θ + C2

ϕ − 2)Z0(r, µ) + CθZ1(r, µ),

Y2(r,C) = CθZ2(r, µ) +
∞∑

j=0

gj(Cθ, Cϕ) ωj(r, µ).

Here gj(Cθ, Cϕ) together with Cθ form the full system of orthogonal (in the sense of the scalar product) polynomials.
In this case, the problem reduces to the system

18



µ
∂Z0

∂r
+ Z0(r, µ) = 0, µ

∂Z1

∂r
+ Z1(r, µ) =

1√
π

∞∫
−∞

Z1(r, τ) exp (−τ2) dτ,

(1.4)

µ
∂Z2

∂r
+ Z2(r, µ) =

1√
π

∞∫
−∞

Z2(r, τ) exp(−τ2) dτ + µZ1(r, µ)− 2
∂Z1

∂µ
+ 4µZ0(r, µ)− 2

∂Z0

∂µ

with the boundary conditions

Z1(∞, µ) = 2U
(1)
θ + 2µS

(0)
rθ −

(
µ2 − 1

2

) ∂τ (0)

∂θ
,

Z2(∞, µ) = 2U
(2)
θ + 2µS

(1)
rθ − 2

(
µ2 − 1

2

)(
S

(0)
rθ −

∂S
(0)
rθ

∂r
−

(
µ− 1

2
εT

)∂2τ (0)

∂r∂θ
+ µ

∂τ (0)

∂θ

)
,

Z0(0, µ) = 0, µ > 0, Z0(∞, µ) = 0, (1.5)

Zi(0, µ) = 2d
(i)
1 + 2µd

(i)
2 , µ > 0, i = 1, 2,

S
(j)
rθ =

1
r

∂U
(j)
r

∂θ
+

∂U
(j)
θ

∂r
−

U
(j)
θ

r
, j = 0, 1.

Here, x = r−R; for brevity, the values of the angle θ are omitted in arguments of the functions, εT is the coefficient
of the temperature jump, τ (0) is the temperature perturbation, and U = β1/2u (u is the mean-mass velocity of the
gas flow).

2. Basic Results. System (1.4) with the boundary conditions (1.5) was solved by the method of elementary
solutions (Case method) [13]. With the use of expansion (1.3) and results obtained in [7, 14–16], the sought slip
velocity of the rarefied gas on the spherical surface with allowance for accommodation coefficients of the two first
moments of the distribution function is written in the form
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where

ζis = (2− q2)
(q−1

1 − 1)(
√

π + πQ1/2)− (1− π/4)Q1

1− π/4 + (1− q2)(1 + π/4 +
√

πQ1)
,

ζT = − (2− q2)(1− π/4)(Q2 + 1/2)/2− (1− q2)(
√

πQ1/2 + π/4)
1− π/4 + (1− q2)(1 + π/4 +

√
πQ1)

,

ζ1 = γ(q2)[α(q1)−Q1], ζ2 = γ(q2)[Q2 + 0.5 + β(q2)], ζ3 = −γ(q2)[Q2 + 1.5 + β(q2)],

ζ4 = 0.5γ(q2)[εn + 2α(q1)− εT β(q2)], ζ5 = γ(q2) [Q1(Q2 + 0.5)− α(q1)],

α(q1) =
√

π

2
(1− q1)(2 +

√
πQ1)

q1(1− π/4)
, β(q2) =

√
π

2
(1− q2)(

√
π + 2Q1)

(2− q2)(1− π/4)
,

γ(q2) = [1 + β(q2)]−1,

Q1 = −1.01619 and Q2 = −1.26632 are Loyalka’s integrals [17], εT = 1.30272, and εn = −0.55844 is the coefficient
found from the condition that the gas molecules do not penetrate through the surface [18].

For q1 = q2 = 1, Eqs. (2.1)–(2.3) transform into the equations obtained in [8, 10] for the case of a spherical
surface. The dependences of the coefficients ζi entering into (2.3) on the accommodation coefficients of tangential
momentum (q1 = q2 = ατ ) are given in Table 1.
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TABLE 1

q1 q2 ζ1 ζ2 ζ3 ζ4 ζ5

0.25 6.44427 −2.27114 0.41919 4.6002 −3.120177

0.25
0.50 5.41844 −1.75042 0.19327 3.7642 −2.623492
0.75 4.43096 −1.24917 −0.02419 2.9595 −2.145376
1.00 3.47972 −0.76632 −0.23368 2.1843 −1.684806

0.25 3.40271 −2.27114 0.41919 1.5586 −0.07861707

0.50
0.50 2.86105 −1.75042 0.19327 1.2068 −0.06610242
0.75 2.33964 −1.24917 −0.02419 0.86817 −0.05405563
1.00 1.83737 −0.76632 −0.23368 0.54196 −0.04245097

0.25 2.38886 −2.27114 0.41919 0.54475 0.9352363

0.75
0.50 2.00859 −1.75042 0.19327 0.35435 0.7863608
0.75 1.64254 −1.24917 −0.02419 0.17106 0.6430511
1.00 1.28992 −0.76632 −0.23368 −0.00549 0.5050008

0.25 1.88193 −2.27114 0.41919 0.03782 1.442163

1.00
0.50 1.58236 −1.75042 0.19327 −0.07188 1.212592
0.75 1.29398 −1.24917 −0.02419 −0.17749 0.9916044
1.00 1.01619 −0.76632 −0.23368 −0.27922 0.7787268

TABLE 2

ατ

ζis ζT

Data of [6] Data of [7] Data of [6] Data of [7]

0.1 17.103130 17.102710 0.2641783 0.2623022
0.2 8.224902 8.224573 0.2781510 0.2765688
0.3 5.255112 5.254859 0.2919238 0.2906146
0.4 3.762619 3.762431 0.3055019 0.3044447
0.5 2.861190 2.861055 0.3188906 0.3180640
0.6 2.255410 2.255316 0.3320949 0.3314773
0.7 1.818667 1.818608 0.3451195 0.3446892
0.8 1.487654 1.487621 0.3579692 0.3577043
0.9 1.227198 1.227184 0.3706483 0.3705269
1.0 1.016191 1.016191 0.3831612 0.3831612

With allowance for accommodation coefficients of the two first accommodation coefficients of the distribution
function, we calculated the slip velocity of the rarefied gas on the solid spherical surface. The calculations of [7]
show that the model of the boundary conditions for q1 = q2 = ατ used in that work yields results that coincide
with the data obtained in [6] for the specular–diffuse model of interaction of gas particles with a flat solid surface
(Table 2). The difference in coefficients of the thermal and isothermal slipping is smaller than 0.72 and 0.005%,
respectively, for the entire range of ατ .

An analysis of the measured accommodation coefficients of tangential momentum q1 [19] shows that the
values of q1 for surfaces not subjected to special treatment (technical surfaces) are within the interval of 0.95–1.00.
At the same time, no direct measurements of the accommodation coefficient q2 were performed. However, an
analysis of the measured results of the thermophoresis rate of coarse aerosol particles [20] shows that ζT = 0.3–0.4.
It follows from (2.2) that q2 = 0.9–1.0 in this case.

Finally, we note that the scheme for imposing boundary conditions used above has a phenomenological
character inherent in moment methods as a whole: expansion of the perturbation of the distribution function on
the interface should be performed by the full system of orthogonal polynomials from molecular velocities. We cannot
state a priori, however, accommodation coefficients of which number of moments of the distribution function should
be taken into account in the description of this or that process caused by gas–surface interaction.

At the same time, the above-made comparison shows that, to correctly describe the dependence of slipping
coefficients of a rarefied gas on a flat solid surface on the accommodation coefficient of tangential momentum, it
suffices to take into account (and assume to be identical) the accommodation coefficients of the two first moments
of the distribution function in formulation of the boundary conditions.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 03-01-00281).

20



REFERENCES

1. M. N. Kogan, Rarefied Gas Dynamics. Kinetic Theory [in Russian], Nauka, Moscow (1967).
2. C. Cercignani, “The Kramers problem for a not completely diffusing wall,” J. Math. Phys. Appl., 10, No. 3,

568–586 (1965).
3. C. Cercignani and M. Lampis, “Kinetic model for gas-surface interaction,” Transp. Theor. Stat. Phys., 1,

101–114 (1971).
4. R. G. Lord, “Some further extension of the Cercignani–Lampis gas–surface interaction model,” Phys. Fluids,

7, No. 5, 1159–1161 (1995).
5. C. E. Siewert, “Generalized boundary conditions for the S-model kinetic equations basic to flow in a plane

channel,” J. Quant. Spectros. Radiat. Transfer, No. 72, 75–88 (2000).
6. C. E. Siewert and F. Sharipov, “Model equations in rarefied gas dynamics: viscous-slip and thermal-slip coeffi-

cients,” Phys. Fluids, 14, No. 12, 4123–4129 (2002).
7. A. V. Latyshev and A. A. Yushkanov, “Accommodation two-moment boundary conditions in problems of

thermal and isothermal slipping,” Inzh.-Fiz. Zh., 74, No. 3, 63–69 (2001).
8. Y. Sone, “Asymptotic theory of flow of rarefied gas over a smooth boundary. 1,” Rarefied Gas Dynamics, 1,

243–253 (1969).
9. Y. Sone, “Asymptotic theory of flow of rarefied gas over a smooth boundary. 2,” Rarefied Gas Dynamics, 2,

737–749 (1971).
10. Y. Sone and K. Aoki, “Forces on a spherical particle in a slightly rarefied gas,” Rarefied Gas Dynamics, 51,

Part 1, 417–433 (1977).
11. S. A. Beresnev, V. G. Chernyak, and G. A. Fomyagin, “Motion of a spherical particle in a rarefied gas. Pt 2.

Drag and thermal polarization,” J. Fluid Mech., 219, 405–421 (1990).
12. S. A. Beresnev and V. G. Chernyak, “Thermophoresis of a spherical particle in a rarefied gas: Numerical

analysis based on the model kinetic equation,” Phys. Fluids, 7, No. 7, 1743–1756 (1995).
13. C. Cercignani, Mathematical Methods in Kinetic Theory, Plenum Press, New York (1969).
14. A. V. Latyshev, V. N. Popov, and A. A. Yushkanov, “Application of the Case method in the problem on thermal

slipping of a rarefied gas on a solid spherical surface,” Sib. Zh. Indust. Mat., 5, No. 3, 103–114 (2002).
15. A. V. Latyshev, V. N. Popov, and A. A. Yushkanov, “Effect of properties of the curved surface on the coefficient

of isothermal slipping,” Poverkhnost’. Rentgen, Sinkhrotron. Neitron. Issled., No. 6, 111–116 (2003).
16. A. V. Latyshev, V. N. Popov, and A. A. Yushkanov, “Calculation of the slip velocity of a rarefied gas, caused by

inhomogeneous temperature distribution in the Knudsen layer,” Sib. Zh. Indust. Mat., 6, No. 1, 60–71 (2003).
17. S. K. Loyalka, “The Qn and Fn integrals for the BGK model,” Transp. Theory Stat. Phys., 4, 55–65 (1975).
18. A. V. Latyshev, “Application of the Case method to solving the linearized kinetic BGK equation in the

temperature-jump problem,” Prikl. Mat. Mekh., 54, No. 4, 581–586 (1990).
19. O. A. Kolenchits, Thermal Accommodation of the Gas–Solid Systems [in Russian], Nauka Tekhnika, Minsk

(1977).
20. B. V. Deriaguin and Yu. I. Yalamov, “The theory of thermophoresis and diffusiophoresis of aerosol particles

and their experimental testing,” Int. Rev. Aerosol Phys. Chem., 3, Part 2, 1–200 (1972).

21


